Identifying ergodicity breaking for fractional anomalous diffusion: Criteria for minimal trajectory length.

نویسندگان

  • Hanna Loch-Olszewska
  • Grzegorz Sikora
  • Joanna Janczura
  • Aleksander Weron
چکیده

In this paper, we study ergodic properties of α-stable autoregressive fractionally integrated moving average (ARFIMA) processes which form a large class of anomalous diffusions. A crucial practical question is how long trajectories one needs to observe in an experiment in order to claim that the analyzed data are ergodic or not. This will be solved by checking the asymptotic convergence to 0 of the empirical estimator F(n) for the dynamical functional D(n) defined as a Fourier transform of the n-lag increments of the ARFIMA process. Moreover, we introduce more flexible concept of the ε-ergodicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo anomalous diffusion and weak ergodicity breaking of lipid granules.

Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads ...

متن کامل

Fractional Feynman-Kac equation for non-brownian functionals.

We derive backward and forward fractional Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing anomalous diffusion. Fractional substantial derivatives introduced by Friedrich and co-workers [Phys. Rev. Lett. 96, 230601 (2006)10.1103/PhysRevLett.96.230601] provide the correct fractional framework for the problem. For applications, we calculate the distri...

متن کامل

Weak ergodicity breaking in an anomalous diffusion process of mixed origins.

The ergodicity breaking parameter is a measure for the heterogeneity among different trajectories of one ensemble. In this report, this parameter is calculated for fractional Brownian motion with a random change of time scale, often called "subordination." We show that this quantity is the same as the known continuous time random walks case.

متن کامل

Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking.

Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of ...

متن کامل

Ageing effects in single particle trajectory averages

We study time averages of single particle trajectories in scale free anomalous diffusion processes, in which the measurement starts at some time ta > 0 after initiation of the process at the time origin, t = 0. Using ageing renewal theory we show that for such non-stationary processes a large class of observables are affected by a unique ageing function, which is independent of boundary conditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 94 5-1  شماره 

صفحات  -

تاریخ انتشار 2016